

NASA's Earth Science Enterprise

Our Planetary Thermostat...

...has maintained a stable climate for millions of years

Over Shorter Time Periods, However...

...climate has exhibited considerable natural variability

Recently the Impacts of Human Activity Have Become More Apparent

Source: U.S. Census Bureau, International Data Base 10-2002.

The Challenge of Earth System Science

- Describing the interactions among Earth's continents, oceans, atmosphere, ice, and life
- Making global observations at 'scales that matter', i.e., at regionally discerning resolutions
- Accurately representing these interactions & ingesting these observations into coupled Earth system models

 Creating processes of prediction and assessment in forms useful to decision-makers

The NASA Vision

To improve life here, To extend life to there, To find life beyond.

The NASA Mission

To understand and protect our home planet, To explore the universe and search for life, To inspire the next generation of explorers ... as only NASA can.

NASA's Earth Observing System & Related Satellites

Evolution of Earth System Science at NASA

• 1960s to 1980s: Exploring the Possibilities

- Birth and early development of satellite remote sensing
- Technology demonstration was the driver

• 1990 to 2000: Surveying the Earth System

- Birth and evolution of the Earth System Science concept
- Focus on providing a broad suite of observations to observe, document and understand Earth system change

• 2000 to 2020: Focus on National Needs

- Answer high-priority science questions with profound national/international economic and policy relevance
- End-to-end science, technology & applications approach

• 2020 and Beyond: Enabling Ubiquitous Use of the View From Space

 Information delivery from space to decision-makers' desktops in a timely and affordable manner

Earth System Science

Managing the End-to-End Information Flow

Petabytes 1015

Multi-platform, multiparameter, high spatial and temporal resolution, remote & in-situ sensing Calibration, Transformation To Characterized Geophysical Parameters

Terabytes 1012

Interaction Between Modeling/Forecasting and Observation Systems

Interactive Dissemination

Predictions

Megabytes 10⁶

Gigabytes 109

Advanced Sensors

Data Processing & Analysis

Information Synthesis

Access to Knowledge

Approach to the Future

- Emphasize information synthesis and knowledge delivery
 - Pursue technologies for communications and computational modeling as well as observation
- Design flexibility into observing & information architectures
 - Standards and protocols to enable "plug compatible"
 contributions from diverse partners
 - Enable integration of space-based, suborbital, and in situ observing systems
- Build partnerships around common goals rather than overlapping requirements

An Integrated Global Observing System

Multiple vantage points, multiple partners

Technology Emphasis Areas

Earth System Science in the future will leverage three ongoing technology revolutions:

...To enable timely and affordable delivery of Earth Science data and information to users

High-Priority, Key Technology Validation Needs for Earth Science

Large Deployable Antennas

Validation enables improved soil moisture and global precipitation science capabilities

Lasers and Deployable Telescopes

Flight validations enable atmospheric chemistry, aerosols and winds science missions

Communications & On-Board Processing

Optical Comm from LEO to GEO RF Comm demonstrates Ka-band in space

Technology significantly improves spatial/spectral resolution and temporal coverage for science missions

Distributed Platforms

Distributed platforms will lead to "sensor webs" for ocean and atmospheric science missions.

Challenges Ahead

- Understanding the Earth system with sufficient depth to enable a predictive capability useful to society at large
- Stewardship of vast quantities of data and information now becoming available
- Simultaneously generating long-term climate data records and making new measurements with new technologies to explore little-understood Earth system processes
- Generating knowledge products useful to non-Earth science specialists in their own decision-making processes

Challenges Ahead

- Advancing computational modeling capacity
 - 100x to advance from global to regional (human) scales
 - 1000x to incorporate chemical and biological processes
 - 10000x to run a complete Earth system model suite capturing all the major interactions among continents, oceans, atmosphere, ice, and life that ultimately shape the climate system
- Designing the global observing system of the future
- Training the next generation of Earth scientists, engineers and technologists

Understand and Protect

• Earth System Science: Dr. Marshall Shepherd

• Earth Science Applications: Dr. Roger King

From Science to Societal Impact (and Back)

